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1 DIRECTION-DEPENDENT ELASTICITY MEASURES
We use three elasticity parameters, the Young’s modulus, Poisson’s
ratio, and bending stiffness, as a way to visualize the direction-
dependent material behavior of structured sheet materials in an
intuitive way. While the formulas to compute these properties from
the stiffness tensors are well-known [Böhlke and Brüggemann 2001],
we think that a more thorough explanation of their derivation is
important for the understanding of direction-dependent material
behavior.

1.1 Membrane
We characterize the membrane behavior of a material using the
Young’s modulus and Poisson’s ratio. Intuitively, these properties
describe how much the material resists stretch along a direction,
and howmuch the material contracts perpendicular to this direction.
Both of these properties are measured in a uniaxial stress configura-
tion, where the material is stretched along a given direction, and any
stress perpendicular to this direction is resolved by deformation.
While the in-plane material behavior is most often described

using the stiffness tensor C, which maps strains to stresses, the case
of uniaxial stress is more easily covered by the compliance tensor
S = C−1, its symmetric inverse, mapping stresses to strains.

Young’s modulus. We can define a uniaxial unit stress along a
given direction d using a simple outer product, σd = ddT . Applying
this stress to the compliance tensor results in the strain ϵd = S : σd

that is induced by this unit stress. From this strain tensor, we want to
extract the deformation along the direction d, which we get by again
applying the tensor ddT to the strain, resulting in the expression
(ddT ) : ϵd. The ratio between the applied stress and the induced
deformation then defines the Young’s modulus, and since we used
the unit stress, we arrive at the formula

E(d) =
1

(ddT ) : S : (ddT )
. (1)

Poisson’s ratio. The computation of the Poisson’s ratio is based
on the same strain response ϵd to the uniaxial unit stress σd, but we
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now compare two different deformations instead of a deformation
and stress. Additionally to the deformation along the direction d, we
therefore also need to extract the deformation along the direction n
that is perpendicular to d, which we get by applying the tensor nnT
to ϵd. The negative ratio between these two deformations defines
the Poisson’s ratio, resulting in the expression

ν (d) = −
(ddT ) : S : (nnT )
(ddT ) : S : (ddT )

. (2)

1.2 Bending
We compute the bending properties based on a simpler approach.
Instead of applying a uniaxial unit moment, we measure the bending
stiffness on a deformation with purely cylindrical curvature directly
on the bending stiffness tensor B. Given a direction d, we apply the
unit curvature tensor κd = ddT to B, which results in the bending
momentMd = B : κd. From this bending moment, we can, similar
to the membrane case, extract the directional bending moment by
again applying the tensor ddT to it. This then gives us the formula
to compute the bending stiffness as

b(d) = (ddT ) : B : (ddT ). (3)

2 TENSILE TEST RESULTS
We present the full plots of our tensile test results in Figure ??,
Figure ??, and Figure 1. For the anisotropic structures 5, 6, 7, and
8, we performed additional measurements on a rotated sample to
capture the direction dependence of the tensile strength.

3 BENDING TEST RESULTS
We present the full plots of our bending test results in Figure ?? and
Figure 2. For structure 7 and 8, we performed additional measure-
ments on a rotated sample to investigate their anisotropy.
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Fig. 1. Tensile test results and comparison to our simulation.

Curvature–bending moment curves
Structure 1 Structure 2

Structure 3 Structure 4

Structure 5 Structure 6

Structure 7 Structure 7 (45◦ rotation)

Structure 8 Structure 8 (90◦ rotation)

Fig. 2. Bending test results and comparison to our simulation.
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