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Figure 1: Different example-based materials illustrated on a set of plastically deforming thin plates.

Abstract
We present a new method for efficiently simulating art-directable deformable materials. We use example poses to
define subspaces of desirable deformations via linear interpolation. As a central aspect of our approach, we use
an incompatible representation for input and interpolated poses that allows us to interpolate between elements
individually. This enables us to bypass costly reconstruction steps and we thus achieve significant performance
improvements compared to previous work. As a natural continuation, we furthermore present a formulation of
example-based plasticity. Finally, we extend the directability of example-based materials and explore a number
of powerful control mechanisms. We demonstrate these novel concepts on a number of solid and shell animations
including artistic deformation behaviors, cartoon physics, and example-based pose space dynamics.

1. Introduction

Deformable materials are an essential part of animated
movies, feature films and computer games since they are
used to animate cloth, fleshy characters, and other non-rigid
shapes. Thanks to progress in simulation and acquisition
methods, the deformation behavior of many real-world ma-
terials can be reproduced in simulation with great accuracy.
However, although some computer-animated materials are
meant to match a real-world counterpart, many others are
largely artistic in nature and should deform in a stylized
fashion according to the vision of an animator. Controlling
such art-directable materials is challenging since conven-
tional models have unintuitive parameters and do not offer
direct control over deformations.

The recent work of Martin and colleagues [MTGG11]
shows that example-based elastic materials (EBEM) are bet-
ter suited for modeling artistic deformation behaviors. In-
stead of hand-selecting unwieldy parameters, the artist pro-

vides a set of example poses that describe desirable defor-
mations of the object. Unfortunately, the control offered by
EBEM comes at a substantial computational cost since it re-
quires solving a nonlinear optimization problem to recon-
struct a consistent geometric representation of interpolated
example poses.

Our work targets both artistic control and efficiency by
simulating example-based elastic materials using incompat-
ible rest shapes combined with a compatible deformed con-
figuration. We use example poses to define subspaces of de-
sirable deformations by means of linear interpolation. As a
central aspect of our approach, we linearly interpolate be-
tween individual elements which allows us to bypass ex-
pensive geometry reconstruction. This, in turn, results in a
significant increase in computational efficiency compared to
previous work. In addition, we extend the example-based
simulation paradigm to shells, we explore the benefits of
example-based plasticity and we highlight various scenar-
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ios where explicitly controlling the activation of the example
poses is beneficial.

Taken together, these contributions advance example-
based materials both in terms of artistic control and effi-
ciency, allowing animators to better realize their artistic vi-
sion for non-rigid materials. We demonstrate results that
show the power and flexibility of our method, including styl-
ized cloth deformation, artistic control of character deforma-
tion, and cartoon physics of car crashes and plane races.

2. Related Work

Simulating Deformable Materials has been a primary fo-
cus of graphics ever since the pioneering work of Terzopou-
los et al. [TPBF87]. The following twenty five years have
seen uncounted improvements in accuracy, speed and robust-
ness that have converged into powerful methods for simulat-
ing deformable solids, surfaces, and curves. Since a sum-
mary of the state of the art within this limited space cannot
do justice to all work, we refer to the survey paper of Nealen
et al. [NMK∗06] and the references therein.

As a central component of soft body simulations, mod-
eling the material behavior, i.e., the relation between ap-
plied force and resulting deformation, has received a lot of
attention. Although many works have addressed nonelastic
materials [OBH02,BWHT07,WT08,GBB09], most applica-
tions are dominated by elastic deformations. Many existing
methods rely on linear elastic material laws, which typically
do not offer enough control over the deformation behavior
for artistic applications. Using more elaborate models from
continuum mechanics [ITF04], possibly nonlinear and data-
driven [BBO∗09, STBG12], can be helpful when simulat-
ing real-world materials such as rubber and foam. However,
artistic materials used in animations often do not have a real-
world counterpart—and hand-selecting the parameters of a
nonlinear material model in order to obtain a desired de-
formation is a virtually impossible task. Some specialized
methods offer more intuitive parameters to control, e.g., the
material behavior of cloth by imposing direction-dependent
limits on the deformation [TPS09]. However, only few mate-
rials can be described adequately through deformation lim-
its.

Even if deformations can, to some extent, be controlled
locally, it is often more desirable to prescribe the deforma-
tion behavior globally. For example, an artist might have a
clear vision of how a character should deform, but trans-
lating this idea into a conventional material law is hard if
not impossible. The example-based materials by Martin et
al. [MTGG11] propose a practical solution to this prob-
lem that allows artists to describe the deformation behav-
ior directly through a set of example poses. This is well
aligned with the typical work-flow of artists, who routinely
sculpt deformations for character animation techniques such
as blend shapes or pose space deformation [LCF00]. While

the method described herein has the same motivation as
[MTGG11], it is more efficient, handles example-based plas-
ticity, and offers greater directability.

Controlling Animations is necessary in most practical ap-
plications. One approach is to compute globally optimal con-
trol forces that make an object satisfy given motion objec-
tives defined through a sparse set of key-frames [WK88,
WMT06, BP08, BdSP09]. An alternative is to use local con-
trollers that compute control forces from smaller time win-
dows, e.g., with the size of a single time step [CMT∗12].
Having a high-resolution simulation track a coarse input an-
imation can be useful for animation layout [BMWG07]. An-
other type of motion control can be implemented by key-
framing the rest shape of a deformable character [KKA05].
Our work does not aim at controlling animations on this
level; rather than having an object move along desired tra-
jectories, our goal is to have objects deform in desired ways.

Interpolating Shapes is an important problem of geometry
processing. Of the numerous solutions that have been pro-
posed (see, e.g., [ACOL00, LSLCO05, KMP07]), our work
is closest related to methods that interpolate in deforma-
tion or strain space: the scheme described by Martin et al.
[MTGG11] interpolates between volumetric solids using the
Green strain; Winkler et al. [WDAH10] as well as Fröh-
lich and Botsch [FB11] interpolate between surfaces using
edge lengths and dihedral angles. As a common point of
strain space schemes, the interpolated configuration has to
be reconstructed into geometry. Since not all strain space
configurations have a geometric counterpart, the reconstruc-
tion has to be done in a least squares sense. In the con-
text of animation [MTGG11], this requirement has lead to
significant computational overhead. However, as recently
shown by Coros et al. [CMT∗12] the reconstruction can
be sidestepped by resorting to an incompatible rest shape
representation—our work builds on this concept. However,
whereas the method described in [CMT∗12] actively con-
trols deformable characters, this work aims at controlling the
deformation behavior of passive elastic materials.

3. Example-Based Materials

Our method takes as input a deformable object whose equa-
tions of motion, discretized in space, are given by

Mẍ+ ∂Wi

∂x
= fext (1)

Here, x and ẍ are the positions and accelerations of the ob-
ject’s nodal degrees of freedom (DOF), M is the mass ma-
trix, Wi = W (X,x) represents the internal potential energy,
X denotes the object’s undeformed configuration, and fext
stores the sum of external forces due to gravity, friction and
contacts.

c© 2012 The Author(s)
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Figure 2: Artist-provided poses X1 and X2 specify a subset
of desirable deformations. During simulation, a secondary
potential energy term attracts the current deformed config-
uration x to Xw, its projection on the example-manifold. We
represent the input poses, as well as Xw, as a disconnected
set of elements, which greatly simplifies our problem formu-
lation.

Following the EBEM paradigm, we add a second elastic
energy term, Wp, to (1) in order to promote user-specified
internal deformations. The rest state of this energy is cho-
sen dynamically from an example-manifold E , which is the
subspace of desirable deformations spanned by a set of in-
put example poses Xi, 1≤ i≤ n. Every configuration Xw =
Xw(w) ∈ E is uniquely defined by the example poses and a
weight vector w = (w1, . . . ,wm) with weight wi correspond-
ing to Xi. The definition of the example-manifold E plays a
paramount role and we introduce our approach in Sec. 4.

Without loss of generality, we define the distance dE (x) of
a given deformed configuration x to the example-manifold as

dE (x) = min
w

Wp(w,x) s.t. Xw(w) ∈ E . (2)

Here, Wp(w,x) =W (Xw(w),x) is used as a generalized dis-
tance measure and the minimizer Xw is the point on the ex-
ample manifold that is closest to x. We refer to the operation
that maps from a given x to the closest Xw as a projection.

During animation, we want to always choose Xw as the
projection of the current configuration x such that the inter-
nal forces generated by Wp attract x directly to the example-
manifold. In order to achieve this, we couple time integration
and projection by minimizing

H(x,w) =
h2

2
aT Ma+Wi(X,x)+Wp(w,x)−xT fext (3)

simultaneously for both x and w. The nodal accelerations

a =
x−xo

h2 − vo

h
(4)

are computed using the current positions as well as the posi-
tions xo and velocities vo from the previous time step. Solv-
ing this optimization problem is equivalent to performing an
implicit Euler step in x, and minimizing the Wp term ensures
that the resulting Xw is closest to x in the sense of (2).

4. Incompatible Shape Representation

We start with a brief review of the interpolation scheme used
in EBEM before explaining our new approach.

EBEM is based on a strain space interpolation, i.e., every
interpolated configuration Ew(w) is a convex combination
of the strain vectors of the input poses Ei = E(Xi). Here,
Ei are concatenations of the Green strain vectors of indi-
vidual (tetrahedral) elements. Interpolated strain vectors Ew
do generally not have a corresponding configuration in ge-
ometry space. Nevertheless, geometry information is needed
in order to define the example potential Wp (at least for
solids). Hence, the geometry Xw(w) corresponding to the
interpolated configuration has to be reconstructed from the
strain space configuration Ew(w). Reconstructing a compat-
ible mesh from a given strain configuration is a nonlinear
operation that does not admit a closed form solution. There-
fore, the nodal coordinates of Xw have to be treated as ex-
plicit optimization parameters and the condition that Xw be
in correspondence to w is enforced via a penalty term. This
roughly doubles the number of DOFs and leads to a signif-
icant increase in computation time compared to an ordinary
animation

Our Approach is to use an incompatible representation for
the example manifold, i.e., we represent both the examples
Xi and the interpolated configuration Xw as sets of discon-
nected elements (see Fig. 2 for an illustration). Depending
on the deformable model, these elements can be represented
by vertex positions expressed in a rotation-free reference
frame (solids) or edge lengths and dihedral angles (shells).
Since the elements of the example poses Xi live in a rotation-
invariant space, we can express each configuration Xw from
the example-space as an element-wise linear combination
of the example poses. We can thus bypass the need to recon-
struct globally compatible geometry, which has a significant
impact: with Xw being an explicit (linear) function of w and
Xi, there is no need for introducing additional DOFs. As we
show in Sec. 6, this leads to a substantial performance im-
provement compared to EBEM.

Analysis In the EBEM formulation, the example potential
Wp is zero everywhere on the manifold by construction.
This ensures that deformation in the example-space is free,
whereas deformation away from it is penalized. Our ap-
proach leads to a slightly different picture. When varying
Xw across the example space, the minimum of Wp(Xw,x)
with respect to x is zero at the examples, whereas it is non-
zero for any other configuration (see Fig. 3, left). This en-
ergy landscape is a direct consequence of the fact that in-
terpolated incompatible configurations can generally not be
reconstructed into compatible geometry without introducing
distortions. This gives rise to two potential concerns: (1) the
energy-minimization might produce a tendency for the de-
formed configuration x to drift towards the examples where

c© 2012 The Author(s)
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Figure 3: Left: energy landscape on the example manifold.
Right: generalized forces due to weight variation.

Wp assumes its minimum value of zero. (2) since the mini-
mum of Wp is not constant across the manifold, some amount
of work has to be done in order to move x from one example
to another, which might result in a resistance to deformation
in the example-space.

In order to estimate the significance of these concerns in
practice, they have to be put in perspective relative to the ef-
fects resulting from the conventional potential Wi (a) pulls
the deformed configuration to the rest shape, as does drift,
and (b) Wi resists general non-rigid deformation, including
those in the example space, as does resistance. Apart from
the many animations that we created with our method, we
also performed an additional experiment to isolate and quan-
tify these effects. As discussed in Sec. 6, we found both drift
and resistance to be insignificant in practice.

4.1. Application to Solids and Shells

We apply our approach to common models for volumetric
solids [ITF04] and thin shells [GHDS03]. Due to the differ-
ent deformation measures used by these models, we handle
the interpolation of solids and shells differently.

4.1.1. Solids

We model three-dimensional solids using tetrahedral Fi-
nite Elements and a modified St. Venant-Kirchhoff material
model as described in [MTGG11]. Evaluating this energy
requires the vertex coordinates for the deformed and unde-
formed configurations. It is hence natural to use a position-
based representation for the elements of Xw.

For every tetrahedral element e of the deformable object
(in undeformed configuration), let ei be the corresponding
element in the ith input example pose, and ew be the corre-
sponding element in Xw. We first center all elements at the
origin, and then extract the rotation matrix Ri between e and
ei. This is accomplished by performing a polar decomposi-
tion on the deformation gradient between the two elements.
Multiplying the vertex positions of ei by RT

i results in all
elements corresponding to e being expressed in a common

reference frame. In this space, element interpolation reduces
to interpolation of vertex coordinates. Every vertex p j of ew
can therefore be expressed as

p j =
n

∑
i=1

wip̂
j
i (5)

where p̂ j
i is the corresponding vertex of ei, expressed in the

common reference frame. It is worth noting that, in this set-
ting, interpolation of vertex coordinates is equivalent to in-
terpolating co-rotated Cauchy strains. Finally, because the
input example poses do not change, this reference frame
needs to be computed only once as a preprocessing step.

4.1.2. Shells

To simulate thin shells and cloth we use the discrete shell
model of Grinspun et al. [GHDS03]. The elastic potential
is, in this case, defined as a function of differences in edge
lengths and dihedral angles between undeformed and de-
formed configurations. It is therefore natural to represent Xw
in terms of these basic elements rather than vertex positions.
As suggested by Fröhlich and Botsch [FB11], we linearly
interpolate between the individual edge lengths and dihedral
angles of the example poses. Again, because the interpolated
configuration is only used to compute the rest state for the
example potential Wp, we can bypass the global geometry
reconstruction used in [FB11].

5. Example-Based Plasticity

Modeling the elastic (reversible) deformation behavior us-
ing examples has many useful applications and it would be
desirable to also control plastic (persistent) deformations in
a similar way. As explained in this section, our framework
can be extended in a straightforward manner to support such
example-based elasto-plastic materials.

Our models for solids and shells measure deformations
in different ways (tensors vs. scalars) such that different ap-
proaches are required for implementing plasticity. However,
the underlying concept is the same: we restrict plastic defor-
mations to the space defined by the (element-wise) interpo-
lation of a set of input shapes.

5.1. Solid Plasticity

We extend the elastic solid model of Irving et al. [ITF04]
to plastic deformation using a multiplicative approach based
on the decomposition of the deformation gradient F = FeFp
into elastic and plastic components. Following Bargteil et
al. [BWHT07] we keep track of the plastic deformation by
storing F−1

p , which simplifies the computation of the elastic
deformation Fe = FF−1

p . After simulation step n, the plastic
deformation for step n+1 is computed per element using the
singular value decomposition (SVD) of its elastic deforma-
tion gradient Fe,n = UnΣnVT

n . The update rule is

F−1
p,n+1 = F−1

p,nVnΣ̂
−γ

n VT
n (6)

c© 2012 The Author(s)
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Figure 4: Different plasticity approaches illustrated on a
vertically compressing cuboid (a) with a single twist ex-
ample provided. Plastic deformation without examples (b),
example-based plasticity with projection (c), and additional
distance-dependent yield threshold (d).

where Σ̂n = det(Σn)
−1/3

Σn and γ is the rate of plastic de-
formation. Note that this formulation ensures that plastic de-
formation is volume preserving since Vn is an orthonormal
matrix and Σ̂n has unit determinant by definition. Follow-
ing Wicke et al. [WRK∗10] the rate of plastic deformation is
computed as

γ = ν∆t
||σ||F − τ

||σ||F
, (7)

where τ is the plastic yield threshold and ||σ||F is the Frobe-
nius norm of the Cauchy stress tensor σ. In order to obtain
σ, we first compute the second Piola Kirchoff stress

S = 2
∂W
∂C

, (8)

where C = FT F is the right Cauchy Green tensor. The
Cauchy stress then follows as σ = J−1FSFT where J =
det(F) [BW97].

The parameter τ in (7) controls how much elastic defor-
mation is required before plastic deformation occurs. Since
we want plastic deformation to occur only in the space
spanned by the input examples we enforce this condition on
a per-element basis. It is most convenient in this case to rep-
resent the input examples as well as interpolated configura-
tions as sets of elemental Green strain vectors E j . For a given
tetrahedron, we start by projecting its current Green strain
E = 1

2 (C−I) onto the element’s example space. This breaks
down to computing a set of weights w = (w1, . . . ,wn)

T such
that the projected strain

Eproj = ∑
j

w jE j (9)

minimizes the distance measure d = ||E−Eproj||F . If the
distance d is too large, the deformation is far away from the
desired subspace and we want to discourage plastic deforma-
tion. This can be done conveniently by modifying the plastic
yield criterion as τ

′ = τ+ηd, where η controls the influence
of d on the onset of plastic flow.

While this approach encourages plastic deformation in
the example space, it does not enforce this as a hard con-
straint. In order to improve on this, we first project the de-
formation gradient onto the example space before computing
plastic updates. The projected deformation gradient Fproj is
computed by taking the root of the projected right Cauchy
Green tensor Cproj = FT

projFproj (using SVD), which is ob-
tained from (9). In order to force plastic updates to lie in
the example space, we then use Fproj instead of F for com-
puting plastic updates according to (6). Note, however, that
although the plastic updates are now guaranteed to lie in the
example space, we still use the distance-dependent yield cri-
terion in (7): Fproj is the deformation gradient from the ex-
ample space that is closest to the original F, but this distance
can be substantial. Fortunately, taking the distance between
original and projected quantities into account prevents this
undesirable effect.

For the purpose of illustration, we ran a simple animation
that emphasizes the different concepts. As shown in Fig. 4a,
a cuboid is deformed by applying a compressive force along
its axis. Depending on the plasticity model, different equilib-
rium poses result once the force has been removed (Fig.4b-
d). A conventional plastic material results in a bulged-out
shape (Fig. 4b). Using example-based plasticity with a single
twist example but without distance-dependent yield thresh-
old leads to a twisted equilibrium pose although this defor-
mation never occurred during compression. Finally, using
the distance-dependent yield criterion leads to the desired
behavior, i.e., in this case no plastic deformation.

5.2. Shell Plasticity

As a natural complement to the discrete shell model, we
model plastic deformations as changes in rest lengths and
angles similar to Bergou et al. [BMWG07]. After each sim-
ulation step, we update rest angles and edge lengths as

θn+1 = θn + sign(∆θ)(|∆θ|−∆θmax) (10)

ln+1 = ln + sign(∆l)(|∆l|−∆lmax) , (11)

where ∆θn/∆ln are deviations of current angles/lengths from
their rest quantities and ∆θmax/∆lmax are thresholds beyond
which plastic deformation occurs.

In analogy to solids, we will project the plastic deforma-
tion per element (i.e., for each edge and hinge element) onto
the space spanned by its examples θ1, . . . ,θn and l1, . . . , ln,
respectively. Since edge lengths and dihedral angles are in-
terpolated independently, the elements’ example spaces are
one-dimensional intervals whose boundaries are defined by
the minimum and maximum values of the examples. In this
setting, the projection becomes a simple clamping operation.
We note that, unlike for the case of solids, this projection
does not introduce artifacts which is again due to the one-
dimensional nature of the example-spaces.

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



Schumacher et al. / Efficient Simulation of Example-Based Materials

6. Results and Discussion

The work of Martin et al. [MTGG11] demonstrates the ben-
efits of example-based simulations for elastic solids. Since
the results we created with our new approach are qualita-
tively very similar we focus on highlighting the key differ-
ences between our formulation and EBEM. In addition, we
demonstrate typical applications for example-based plastic-
ity, example-based simulation of shells and explicit weight
control. Our results are best seen in the accompanying video,
and timing information is summarized in Table 1.

Simulation Model DOFs #Examples Time (s)

Arm Solid 13770 1 688.97
Arm Solid 13770 0 366.74
Car crash Solid 1412 2 18.14
Plane Solid 3796 2 881.75
Drape 1 Shell 10619 2 271.85
Drape 2 Shell 10618 1 388.39
Sleeve Shell 4996 1 906.60
Sleeve Shell 4995 0 887.22
Plate Shell 3946 1 38.60
Stretching sheet Shell 8015 2 49.71

Table 1: Summary of results with columns indicating the
elastic model, number of DOFs and examples, and average
time to synthesize one second of simulated motions.

The main difference between our work and EBEM is due
to the incompatible shape representation we use for the in-
put poses, as well as for the projected configuration Xw. This
choice of representation leads to optimization problems with
a significantly smaller number of variables as the global ge-
ometry reconstruction step required by EBEM is no longer
needed. Our example-based simulations are, as a result, sig-
nificantly cheaper computationally.

To estimate the computational benefits of our method, we
recreated the twisting cuboid example introduced by EBEM
and ran simulations using both methods on the same ma-
chine. The same settings for the physical scene and the same
input poses were used. We created three versions of the ob-
ject with different mesh resolutions (975, 3159 and 4131
DOFs) in order to see how our method scales with the com-
plexity of the objects being simulated. Our simulations ran
14.8, 28.1 and 31.1 times faster than EBEM.

6.1. Validation

In order to quantify the impact of the drift and resistance
effects described in Sec. 4 we ran an additional experi-
ment based on the twisting cuboid animation. We interpolate
between the undeformed and the twisted pose using 1000
equidistant samples for w. For each sample, we obtain the
(incompatible) rest state Xw by linear interpolation and com-
pute a corresponding deformed configuration x by minimiz-
ing Wp(Xw,x) with respect to x. We record the values of Wi
and Wp and then compute the derivatives of Wi and Wp with

Figure 5: The elastic and plastic deformation behaviors are
independently controlled for this simulated car.

respect to w using finite differences. These derivatives can be
interpreted as generalized forces that act on the weights dur-
ing energy minimization—and these are the source of both
drift and resistance effects. However, as can be seen from
Fig. 3 (right), the generalized forces due to Wi are signifi-
cantly larger (roughly two orders of magnitude) than those
created by Wp. These effects can therefore be assumed to be
largely overruled by the conventional potential in practice.

6.2. Elasto-Plastic Simulation of Shells and Solids

With our method, the style of plastic and elastic deforma-
tions can be controlled independently. This is illustrated in
the car crash example (Fig. 5), where an input pose is used
to prescribe desirable plastic deformations that only affect
the roof of the car; a different input pose is used to specify
a global twist that only affects the behavior of purely elastic
deformations.

The formulation we present allows the example-based
simulation paradigm to be easily extended to shell-based ob-
jects. Fig. 1 shows the plastically deformed configuration of
a rigid sheet of simulated metal immediately following a col-
lision with the ground. A related experiment is illustrated in
Fig. 6, where stretching a sheet of material along different
axes results in different example poses becoming active.

Figure 6: Input example poses provide a convenient inter-
face for artistic control over simulations, as seen here for
elastically deforming, shell-based objects.

The potential energy term that is used to control the out-
come of simulations is identical in nature to the potential en-
ergy used to penalize deformations. As a new example pose
starts to become active, therefore, the degree to which the

c© 2012 The Author(s)
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outcome of the simulation changes is directly affected by the
stiffness of this potential. This ensures that the overall be-
havior of the simulated object remains plausible. However,
as a downside, the input example poses are not guaranteed
to always be fully visible in the outcome of the simulations.
This can be observed when applying our method to cloth
simulations (Fig. 7), where the bending stiffness is typically
quite low. The effect of the example pose can be observed in
the results, but the deformations are not as extreme as in the
provided example.

Figure 7: Our framework enables control over the wrinkles
that form in simulated cloth. Left: no examples were used.
Middle: The bottom part of the cloth appears to twist. Right:
a very specific wrinkling pattern is prescribed.

Explicit Weight Control

For the results discussed so far, naturally occurring defor-
mations drive the activation of the input examples. However,
as shown here, it can also be desirable to explicitly specify
the activation patterns. For this purpose, Equation (3) can be
easily modified to allow explicit control over the values of
the weights associated with the input poses.

As highlighted by McAdams et al. [MZS∗11], soft tis-
sue simulation for character animation purposes has several
benefits, including an automatic treatment of contacts and
collisions. Our method adds another important ingredient to
this line of research: artistic control over the deformation be-
havior of the simulation, as illustrated by the arm example
(Fig. 8). Two artist-sculpted example poses, one where the
arm is straight, and another where it is bent, were provided
as input, and external forces were used to bend the arm. As
a function of the joint angle of the elbow joint we increase
the weight associated with the example pose, which is then
treated as a hard constraint. The original artistic intent can be
seen in the outcome of the simulation, as the muscles appear
to flex in a natural way while exhibiting subtle dynamics.
This application can be considered as a hybrid between tra-

ditional pose space deformation [LCF00] and physics-based
simulation.

Figure 9: Velocity-dependent activation of examples leads
to different wrinkles forming as the drape swings back and
forth.

Fig. 9 shows several frames from an animation of a swing-
ing drape. The example activation is controlled as a function
of the center of mass velocity, and as a result, different types
of wrinkles form when the drape swings forwards and back-
wards. A similar strategy is used to control the deformations
of the simulated plane shown in Fig. 10. As a function of the
angle between the center of mass velocity and acceleration
vectors we activate a potential that creates the impression
that the plane is leaning into the turns.

Figure 10: A simulated plane appears to lean into the turns.

7. Limitations and Future Work

We present an efficient way of simulating example-based,
elasto-plastic shells and solids. At the core of our method is
an incompatible shape representation which greatly simpli-
fies interpolation on the manifold defined by a set of input
shapes.

As noted in [MTGG11], it is possible to provide input ex-
amples that counteract the deformations that an object natu-
rally undergoes. As a result, those particular examples may
not become active. While this remains a problem in general,
the explicit weight control method that we experimented
with could be used to give users additional control over the
simulation results.

Large deformations typically require a remeshing of the
simulated objects. Our simulation environment requires the
input examples to have the same topology as the object,
and therefore they have to also be remeshed at the same

c© 2012 The Author(s)
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Figure 8: The example activation is controlled by the joint angle of the arm, resulting in a flexed biceps as the arm bends.

time. This is an interesting direction for future work, as the
remeshing operation needs to simultaneously ensure well-
shaped elements for the deformed configuration as well as
all the example poses.
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